1 Express $2 \sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants to be determined, and $0<\alpha<\frac{1}{2} \pi$.

Hence write down the greatest and least possible values of $1+2 \sin \theta-3 \cos \theta$.

2 Express $4 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<{ }_{2}^{1} \pi$.Hence solve the equation $4 \cos \theta-\sin \theta=3$, for $0 \leqslant \theta \leqslant 2 \pi$.

3 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π.
(i) Fig. 8.1 shows a regular 12 -sided polygon inscribed in a circle of radius 1 unit, centre O . AB is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1
(A) Show that $\mathrm{AB}=2 \sin 15^{\circ}$.
(B) Use a double angle formula to express $\cos 30^{\circ}$ in terms of $\sin 15^{\circ}$. Using the exact value of $\cos 30^{\circ}$, show that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$.
(C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that $\pi>6 \sqrt{2-\sqrt{3}}$.
(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2
(A) Show that $\mathrm{DE}=2 \tan 15^{\circ}$.
(B) Let $t=\tan 15^{\circ}$. Use a double angle formula to express $\tan 30^{\circ}$ in terms of t.

Hence show that $t^{2}+2 \sqrt{3} t-1=0$.
(C) Solve this equation, and hence show that $\pi<12(2-\sqrt{3})$.
(iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of π, giving your answers in decimal form.

4 Solve the equation $\cos 2 \theta=\sin \theta$ for $0 \leqslant \theta \leqslant 2 \pi$, giving your answers in terms of π.

5 Express $\sqrt{3} \sin x-\cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$. Express α in the form $k \pi$.

Find the exact coordinates of the maximum point of the curve $y=\sqrt{3} \sin x-\cos x$ for which $0<x<2 \pi$.

6 Express $\sin \theta-3 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants to be determined, and $0^{\circ}<\alpha<90^{\circ}$.

Hence solve the equation $\sin \theta-3 \cos \theta=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.
$7 \quad$ Fig. 1 shows part of the graph of $y=\sin x \quad \sqrt{3} \cos x$.

Fig. 1
Express $\quad \sqrt{ } \quad$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0 \leqslant \alpha \leqslant \frac{1}{2} \pi$.
Hence write down the exact coordinates of the turning point P .

