1 Express $2\sin\theta - 3\cos\theta$ in the form $R\sin(\theta - \alpha)$, where *R* and α are constants to be determined, and $0 < \alpha < \frac{1}{2}\pi$.

Hence write down the greatest and least possible values of $1 + 2\sin\theta - 3\cos\theta$. [6]

[7]

2 Express $4\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.

Hence solve the equation $4\cos\theta - \sin\theta = 3$, for $0 \le \theta \le 2\pi$.

- 3 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for π .
 - (i) Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre O. AB is one of the sides of the polygon. C is the midpoint of AB. Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1

(A) Show that $AB = 2 \sin 15^{\circ}$.

[2]

[2]

[3]

- (*B*) Use a double angle formula to express $\cos 30^\circ$ in terms of $\sin 15^\circ$. Using the exact value of $\cos 30^\circ$, show that $\sin 15^\circ = \frac{1}{2}\sqrt{2-\sqrt{3}}$. [4]
- (C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that
$$\pi > 6\sqrt{2 - \sqrt{3}}$$
. [2]

(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon.

Fig. 8.2

- (A) Show that $DE = 2 \tan 15^{\circ}$.
 - (*B*) Let $t = \tan 15^\circ$. Use a double angle formula to express $\tan 30^\circ$ in terms of t. Hence show that $t^2 + 2\sqrt{3}t - 1 = 0$.
 - (C) Solve this equation, and hence show that $\pi < 12(2 \sqrt{3})$. [4]
- (iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of π , giving your answers in decimal form. [2]

PhysicsAndMathsTutor.com

5 Express $\sqrt{3} \sin x - \cos x$ in the form $R \sin(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Express α in the form $k\pi$.

Find the exact coordinates of the maximum point of the curve $y = \sqrt{3} \sin x - \cos x$ for which $0 < x < 2\pi$. [6]

6 Express $\sin \theta - 3 \cos \theta$ in the form $R \sin (\theta - \alpha)$, where R and α are constants to be determined, and $0^{\circ} < \alpha < 90^{\circ}$.

Hence solve the equation $\sin \theta - 3\cos \theta = 1$ for $0^\circ \le \theta \le 360^\circ$. [7]

7 Fig. 1 shows part of the graph of $y = \sin x \sqrt{3}\cos x$.

Fig. 1

Express $\sqrt{}$ in the form $R \sin(x - \alpha)$, where R > 0 and $0 \le \alpha \le \frac{1}{2}\pi$.

Hence write down the exact coordinates of the turning point P.

[6]

[7]